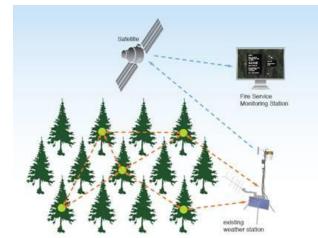


ROUTING PROTOCOL WIRELESS SENSOR NETWORKS

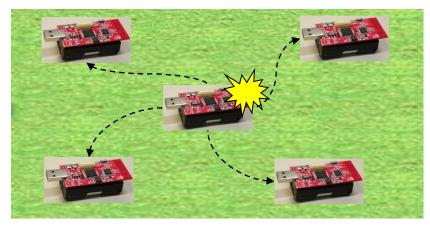

Mochammad Zen Samsono Hadi, ST. MSc. Ph.D.

Routing Techniques in Wireless Sensor Networks

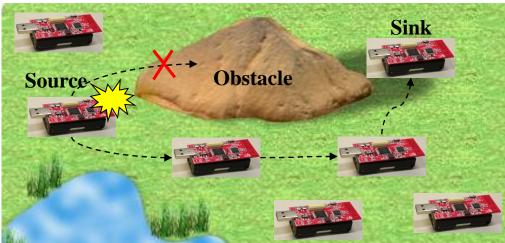
- Structure and applications of WSNs
- WSN vs. Ad hoc and cellular networks
- Routing challenges and design issues
- Classification of routing protocols
- Flat network routing
- Hierarchical routing
- Location based routing
- Comparison of different protocols
- Route Discovery Protocols
- Conclusion and future directions

Wireless Sensor Networks (WSN)

- Small nodes with sensing, computation, and wireless communications capabilities.
- Applications:
 - ✓ Security and tactical surveillance
 - ✓ Weather monitoring
 - ✓ Disaster management....

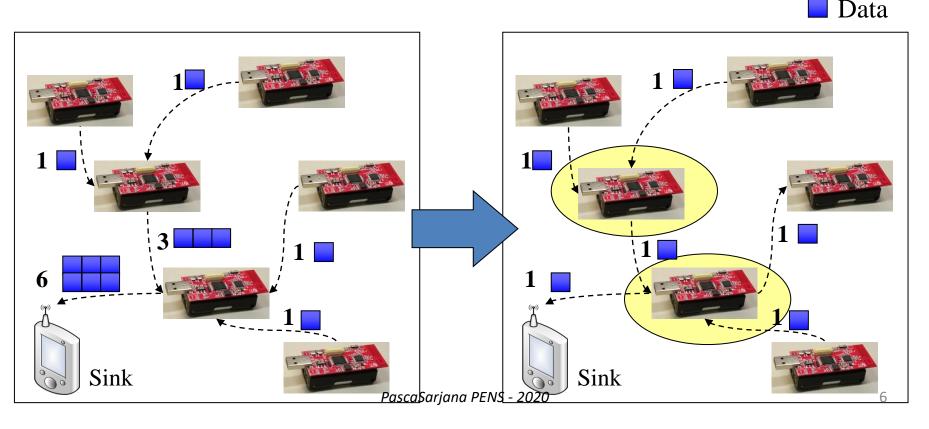


WSN vs. Ad hoc and cellular networks


- Very large number of sensor nodes
- Data flow from multiple sources to particular BS
- Constraint of energy, processing and storage capabilities
- Nodes are generally stationary after deployment
- WSN are application-specific
- Position awareness of sensor nodes is important
- High probability of redundancy

Single-hop vs. Multi-hop Networks

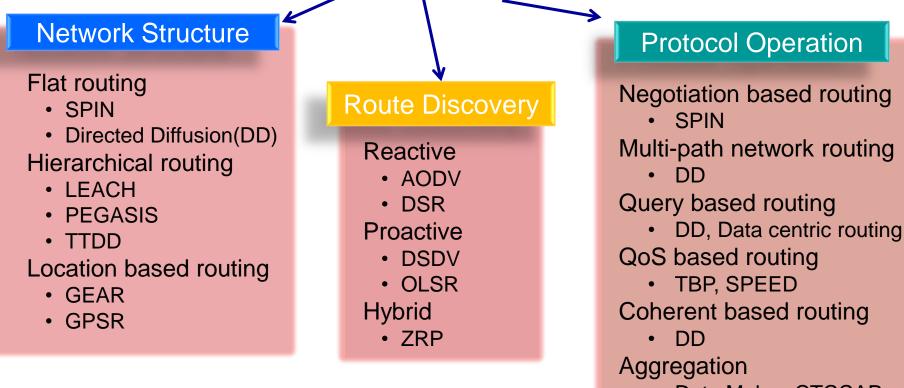
Single-hop networks



- Multi-hop networks: sensors cooperate in propagating sensor data towards the sink
- Routing protocol is responsible for finding and maintaining path from sensor to sink
 PascaSarjana PENS - 2020

In-network Processing

- Processing Aggregation example
 - The simplest in-network processing technique
 - Reduce number of transmitted bits/packets by applying an aggregation function in the network



Routing challenges and design issues

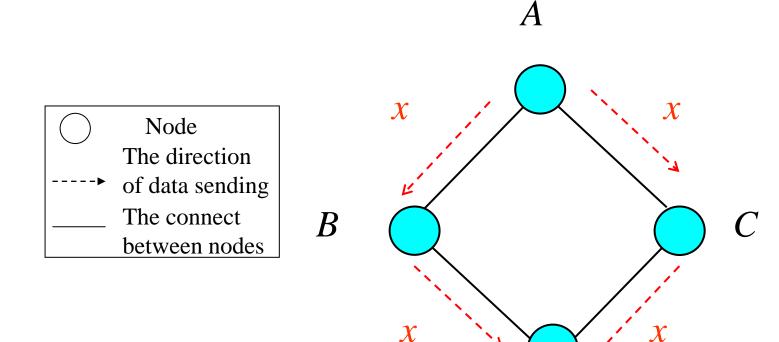
- Node deployment: deterministic, randomized
- Energy consumption: without losing accuracy
- Data reporting method: time-driven, event-driven, query-driven, hybrid
- Fault Tolerance: lack of power, physical damage or environmental interferences
- Node/link heterogeneity
- Network Dynamics: fixed and mobile nodes
- Scalability: hundreds or thousands of nodes
- Data aggregation: aggregation from multiple nodes
- Quality of service: related with energy dissipation

Routing Protocols in WSNs: A taxonomy

Data Mules, CTCCAP

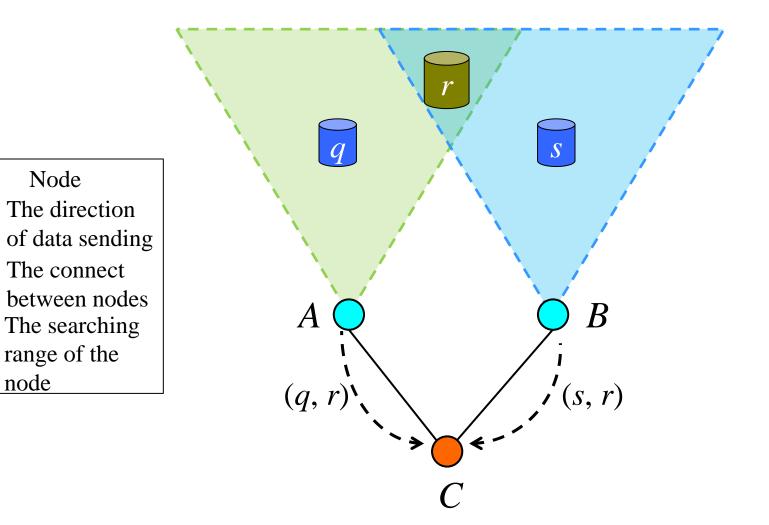
Classification of Routing Protocols

- Network structure
 - Flat: all nodes are "equal"
 - Hierarchical: different "roles" for different nodes
 - Location-based: nodes rely on location information
- Route Discovery
 - Reactive (on-demand): find route only when needed
 - Proactive (table-driven): establish routes before they are needed
 - Hybrid: protocols with reactive and proactive characteristics
- Protocol operation
 - Negotiation-based: negotiate data transfer before they occur
 - Multi-path: use multiple routes simultaneously
 - Query-based: receiver-initiated
 - QoS-based: satisfy certain QoS (Quality-of-Service) constraints
 - Coherent-based: perform only minimum amount of in-network processing


Routing Metrics

- Minimum hop (shortest hop)
- Energy
 - Minimum energy consumed per packet
 - Maximum time to network partition
 - Minimize variance in node power levels
 - Maximum (average) energy capacity
- Quality-of-service
 - Latency (delay), throughput, jitter, packet loss, error rate
- Robustness
 - Link quality, link stability

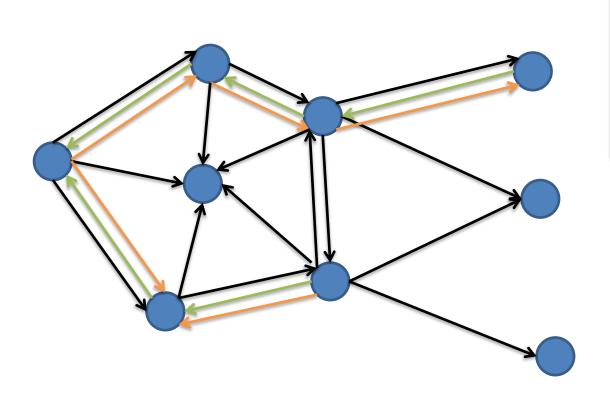
Flat Routing

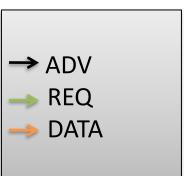

- In flat network, each node typically plays the same role and sensor nodes collaborate together to perform the sensing task.
- Every sensor node (re-)broadcasts sensor data to all of its neighbors => flooding
- Problem in flooding:
 - Implosion: nodes will re-broadcast even when neighbors already have a copy
 - Overlap: sensor data contains redundant information
- To overcome the problems: uses negotiations (data-centric routing)
- Prior works on data centric routing, e.g., SPIN and Directed Diffusion, were shown to save energy through data negotiation and elimination of redundant.

Problem in Flat: Implosion

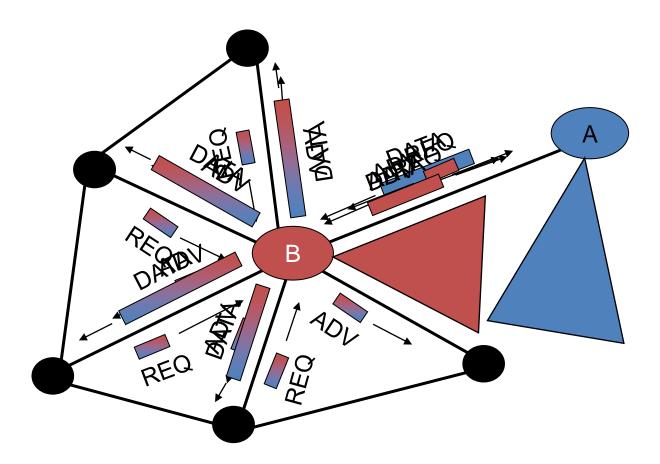
https://www3.nd.edu/~cpoellab/teaching/cse40815/Chapter7.pdf

Problem in Flat: Overlap

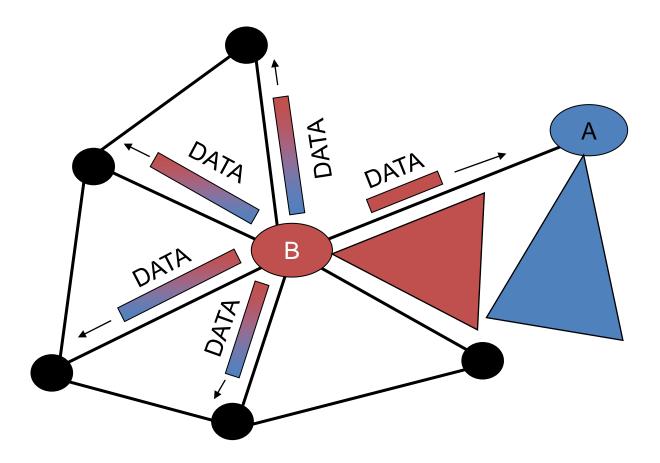



Flat network routing

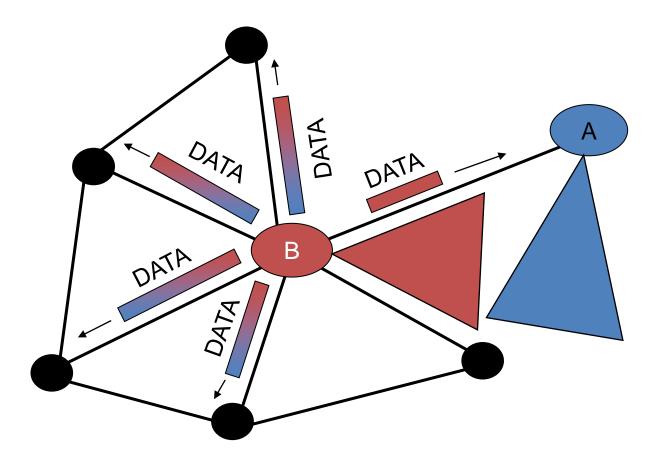
Sensor Protocol for Information via negotiation (SPIN)


- Each node is considered as a potential BS
- Sending data that describe the sensor data instead of sending all the data
- Solves the problem of flooding and saves energy by negotiating the transmitted data
- Three-stage protocol: ADV, REQ, DATA

Sensor Protocol for Information via negotiation (SPIN)



SPIN (3-Step Protocol)



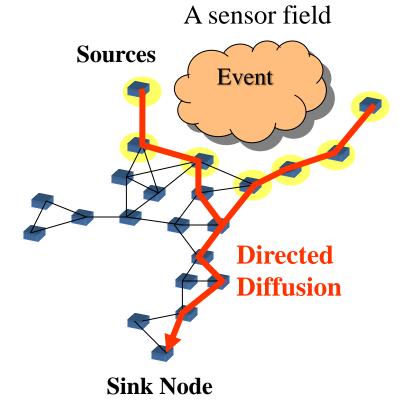
SPIN (3-Step Protocol)

Notice the color of the data packets sent by node B

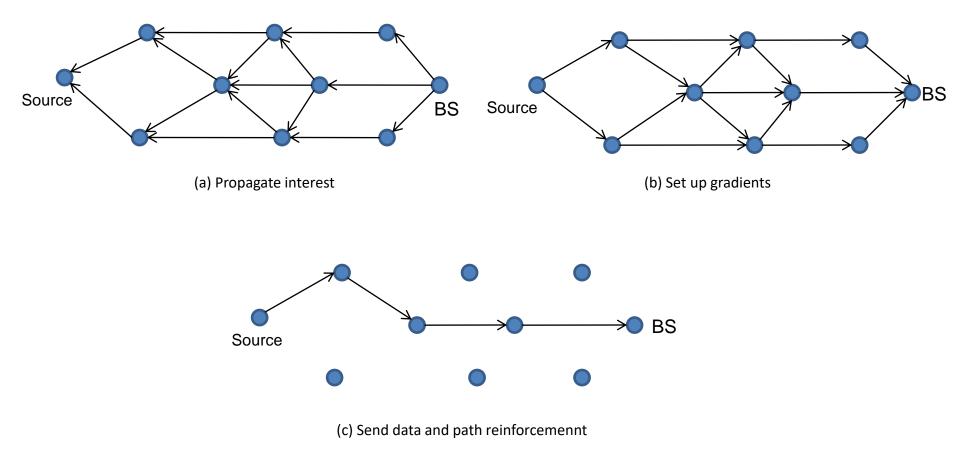
SPIN (3-Step Protocol)

SPIN effective when DATA sizes are large : REQ, ADV overhead gets amortized

PascaSarjana PENS - 2020


Flat network routing

Directed diffusion


- Data-centric protocol
- Finds an optimal tree that gets the data from multiple source nodes to the BS
- The BS requests data by broadcasting interests
- Gradients are set up to draw requested data toward the requesting node
- Best paths are elected and reinforced to prevent further flooding
- The BS periodically refreshes and resends the interest when it starts to receive data from the source

Directed Diffusion

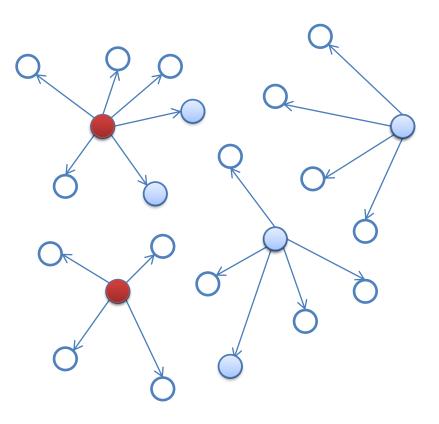
- Data-centric communication
 - Data is named by attribute-value pairs
 - Different form IP-style communication
 - End-to-end delivery service
 - e.g.
 - How many pedestrians do you observe in the geographical region X?

Directed diffusion

Hierarchical network routing

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)

- Cluster based
- Cluster Heads randomly selected
- CH's role is rotated > uniform energy dissipation
- Uses TDMA as MAC protocol
 avoid collision


✓ Two phases:

- **Setup phase**: *Clusters organization and CHs selection*
- Steady state phase : Data transfer

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)

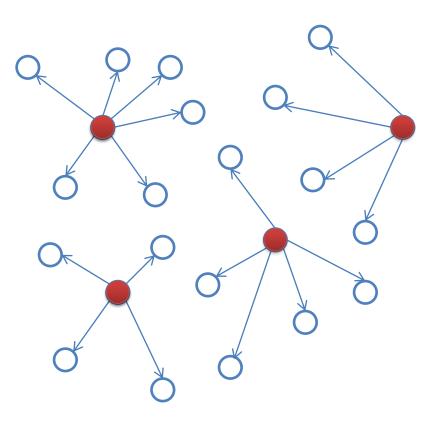
Setup phase:

- Predetermined fraction of nodes elect themselves:
 - 1. A sensor node chooses a random number r
 - If r > threshold then the node becomes a CH
 - 3. No CHs nodes select to witch cluster to belong after receiving CHs advertisement
 - 4. Each CH creates a TDMA schedule and broadcasts it to all nodes within the cluster

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)

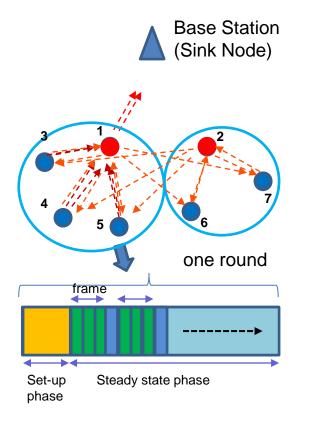
Threshold:

Each node computes its own threshold


Depends on:

- the Remaining energy of the node
- Number of the nodes already elected as CH
- Equal to 0 if the node is already elected within last 1/P rounds where P is a given fraction (between 0 and 1)

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)


Steady phase:

- Sensor nodes start sensing and transmitting data to CHs
- CHs aggregate data and send it to BS
- After a predetermined time the network goes back to the setup phase

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)

Basic Clustering: LEACH (Low-Energy Adaptive Clustering Hierarchy) - Decentralized

- It is divided into round.
- Each round has:

a. Set-up phase

- Elected CH (Cluster Head) based on the probability.
- Broadcast ADV (Advertisement) message to non-CH
- Fach non-CH chooses CH based on RSSI (signal strength) and send join-request message
- CH sets up transmission schedule (TDMA) •

b. Steady State phase

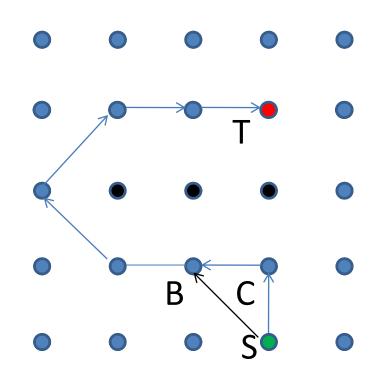
 Cluster members (CM) send data to CH once per frame during the allocated time slot. PascaSariana PENS - 2020

Low Energy Adaptive Clustering Hierarchy protocol (LEACH)

Drawbacks:

- Assumes that all nodes have enough power to transmit to the BS
- → Not applicable in large regions
- Random election
- → Possibility that all CHs will be concentrated in same area
- Dynamic clustering

• extra overhead (CH role rotating, advertisement)


Location based protocols

Geographic and Energy Aware Routing

- Routing based on a cost function depending on the <u>distance</u> to the target and the remaining <u>energy</u>.
- A node N receive from a neighbor Ni its cost function and then updates its own cost function: H(N,T) = H(Ni, T) + C(N, Ni)
- If no cost function received from the node, then compute a default cost function: C(N,T)= αd(N,T) + (1- α) Er

Geographic and Energy Aware Routing

- > Suppose $\alpha = 1$
- S is sending a packet to T
- C is the closer neighbor to T
 - →S Sends the packet through C
- S receive new learned cost function from C.
- Now, B's cost function is less than C
 - Next packet will be sent through B

Comparison of routing protocols

	Classificati on	Negotiati on based	Data aggregation	Localization	QoS	Multipath	Query based
SPIN	Flat	Yes	Yes	No	No	Yes	Yes
Directed diffusion	Flat	Yes	Yes	Yes	No	Yes	Yes
LEACH	Hierarchic al	No	Yes	Yes	No	No	No
GEAR	Location	No	No	No	No	No	No

Challenges to be solved

- Tight coupling between sensor nodes and the physical space.
 - Unattended environment
- Energy consumption while packet transmission:
 - Sending 1 bit over 100m ⇔ millions of processing tasks
- > No guaranteed QoS:
 - Need of guaranteed bandwidth and delay, especially for real time applications
- Nodes mobility:
 - Most existing protocols assume that sensor nodes and BS are stationary

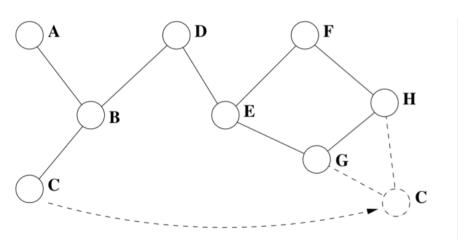
Future directions

> Exploit redundancy:

• Fault tolerance techniques

Processing and computation of data locally
 High need to create efficient processing points in the network
 How to efficiently choose those points ?

Localization:


- Means of establishing a coordinate system
- GPS usage is not conceivable
- Existing techniques doesn't offer enough accuracy

ROUTE DISCOVERY

Proactive Routing

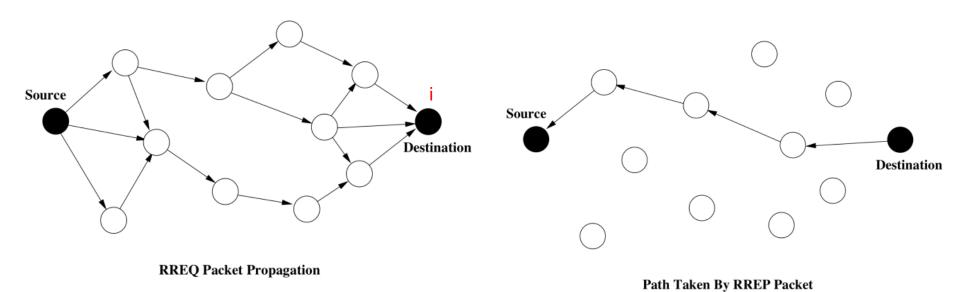
- Routes are established before they are actually needed
 => table-driven routing
- Example: DSDV (Destination-sequenced distance vector) and OLSR (Optimized link state routing)
- Main advantage: routes can be used immediately when needed (table look up for next-hop neighbor)
- Main disadvantages:
 - Establishing and maintaining routes that are infrequently (or never) needed
 - Routing tables can become very large
 - Stale information instables can lead to routing errors

DSDV: Example

C	B Da	ata
---	------	-----

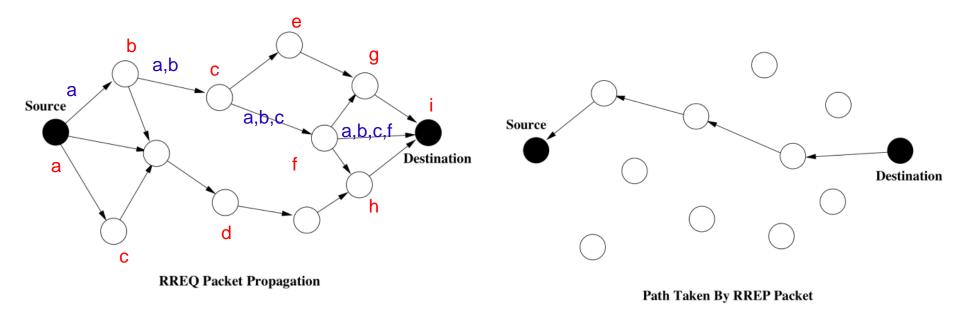
Destination	NextHop	Distance	Destination	NextHop	Distance
Α	В	2	Α	В	2
В	В	1	В	В	1
С	B	2 —	—► C	E	3
D	D	0	D	D	0
E	E	1	Ε	E	1
F	E	2	F	E	2
G	E	2	G	E	2
н	E	3	н	E	3

Node D's Table Before C's Move


Node D's Table After C's Move

• DSDV: nodes broadcast their routing tables to their neighbors periodically and whenever significant information is available

On-Demand (Reactive) Routing


- Routes are not established until actually needed
- Instead, a source node (knowing the identity / address of a destination node) initiates a route discovery process which completes when at least one route has been found or all possible paths have been examined
- A newly discovered route is then maintained until it either breaks or is no longer needed by the source
- Example: AODV (Ad Hoc On-Demand Distance Vector), DSR (Dynamic Source Routing)
- AODV relies on broadcast route discovery mechanism, which is used to dynamically establish route table entries at intermediate nodes
- Path discovery process of AODV: route request (RREQ) and route reply (RREP)
 PascaSarjana PENS - 2020

AODV VECTOR

- Routes are established only when needed
- No need for route table updates and exchanges for unused routes
- Periodic HELLO messages
- RREP uses reverse path of RREQ

DSR (Dynamic Source Routing)

• Each data packet sent by the source has to contain complete source route information

Zone Routing Protocol (ZRP)

- Hybrid approach proactive (intra-zone) and on-demand (inter-zone)
- Border nodes (via bordercast) perform on-demand route discovery

