import numpy as np max_element_column = np.max(X, 0) min_element_column = np.amin(X, 0) # @title Testing the Model pH = input('pH: ') temp = input('Temp: ') taste = input('Taste: ') odor = input('Odor: ') fat = input('Fat: ') turb = input('Turbidity: ') colour = input('Colour: ') test_data = np.array([float(pH),float(temp),float(taste),float(odor), float(fat),float(turb),float(colour)]) test_data = np.reshape(test_data,(1,-1)) print(test_data) # Convert max_element_column and min_element_column to NumPy arrays max_element_column = max_element_column.to_numpy() min_element_column = min_element_column.to_numpy() #karena newmin=0 dan newmax=1 maka bisa dipke rumus dibawah test_data = (test_data - min_element_column) / \ (max_element_column - min_element_column) print(test_data) hasil=rfc.predict(test_data) print('Hasil dari random forest: ', hasil)