Wireless Sensor Networks

By: Mochammad Zen Samsono Hadi

Wireless Sensor Networks (WSNs)

A sensor network is a wireless network that consists of thousands of very small nodes called sensors.

Wireless Sensor Networks (cont.)

 WSN Sensors are equipped with sensing, limited computation, and wireless communication capabilities.

Introduction

- Wireless Sensor Networks are networks that consists of sensors which are distributed in an ad hoc manner.
- These sensors work with each other to sense some physical phenomenon and then the information gathered is processed to get relevant results.
- Wireless sensor networks consists of protocols and algorithms with self-organizing capabilities.

Comparison with ad hoc networks

- Wireless sensor networks mainly use broadcast communication while ad hoc networks use point-to-point communication.
- Unlike ad hoc networks wireless sensor networks are limited by sensors limited power, energy and computational capability.
- Sensor nodes may not have global ID because of the large amount of overhead and large number of sensors.

- WSNs have many advantages over traditional networking techniques.
- They have an ever-increasing number of applications, such as infrastructure protection and security, surveillance, health-care, environment monitoring, food safety, intelligent transportation, and smart energy.

WSNs Applications

Figure 3:WSNs Applications

Example of WSN

Introduction to Wireless Sensor Networks

Ref:http://esd.sci.univr.it/images/wsn-example.png

Applications of Wireless Sensor networks

The applications can be divided in three categories:

- I. Monitoring of objects.
- 2. Monitoring of an area.
- 3. Monitoring of both area and objects.

Monitoring Area

- Environmental and Habitat Monitoring
- Precision Agriculture
- Indoor Climate Control
- Military Surveillance
- Intelligent Alarms

Example: Precision Agriculture

- Precision agriculture aims at making cultural operations more efficient, while reducing environmental impact.
- The information collected from sensors is used to evaluate optimum sowing density, estimate fertilizers and other inputs needs, and to more accurately predict crop yields.

Monitoring Objects

- Structural Monitoring
- Eco-physiology
- Condition-based Maintenance
- Medical Diagnostics
- Urban terrain mapping

Monitoring Interactions between Objects and Space

- Wildlife Habitats
- Disaster Management
- Emergency Response
- Ubiquitous Computing
- Asset Tracking
- Health Care

Example: Habitat Monitoring

The ZebraNet Project

Collar-mounted sensors monitor zebra movement in Kenya

Source: Margaret Martonosi, Princeton University

Introduction to Wireless Sensor Networks

Disaster Management

Source: Cabinet Office, Disaster Management in Japan

Characteristics of Wireless Sensor Networks

- Wireless Sensor Networks mainly consists of sensors.
 Sensors are -
 - Iow power
 - limited memory
 - energy constrained due to their small size.
- Wireless networks can also be deployed in extreme environmental conditions and may be prone to enemy attacks.
- Although deployed in an ad hoc manner they need to be self organized and self healing and can face constant reconfiguration.

Heterogeneity

The devices deployed maybe of various types and need to collaborate with each other.

Distributed Processing

The algorithms need to be centralized as the processing is carried out on different nodes.

Low Bandwidth Communication

The data should be transferred efficiently between sensors

Continued..

Large Scale Coordination

• The sensors need to coordinate with each other to produce required results.

Utilization of Sensors

• The sensors should be utilized in a ways that produce the maximum performance and use less energy.

Real Time Computation

The computation should be done quickly as new data is always being generated.

Operational Challenges of Wireless Sensor Networks

- Energy Efficiency
- Limited storage and computation
- Low bandwidth and high error rates
- Errors are common
 - Wireless communication
 - Noisy measurements
 - Node failure are expected
- Scalability to a large number of sensor nodes
- Survivability in harsh environments

Enabling Technologies

Future of WSN Smart Home / Smart Office

Sensors controlling electrical devices in the house.

Better lighting and heating in office buildings.

The Pentagon building has used sensors extensively.

Biomedical / Medical

Health Monitors

- Glucose
- Heart rate
- Cancer detection

Chronic Diseases

- Artificial retina
- Cochlear implants

Hospital Sensors

- Monitor vital signs
- Record anomalies

Industrial & Commercial

Numerous industrial and commercial applications:

- Agricultural Crop Conditions
- Inventory Tracking
- In-Process Parts Tracking
- Automated Problem Reporting
- Theft Deterrent and Customer Tracing
- Plant Equipment Maintenance Monitoring

Traffic Management & Monitoring

✓ Sensors embedded in the roads to:

-Monitor traffic flows

-Provide real-time route updates

- Future cars could use wireless sensors to:
 - Handle Accidents
 - Handle Thefts

000

 \mathcal{O}

Remote deployment of sensors for tactical monitoring of enemy troop movements.

Mobile Group Movement

- Future military: attacking by sensor nodes
- It needs coordination between nodes
- Combination between AI (artificial intelligence), sensor technology and wireless communications
- There is a goal for the nodes

Motes mainly consist of three parts:-

- Mote basically consists of a low cost and power computer.
- The computer monitors one or more sensors. Sensors may be for temperature, light, sound, position, acceleration, vibration, stress, weight, pressure, humidity, etc.
- The computer connects to the outside world with a radio link.

Mica 2 Motes

- These motes sold by Crossbow were originally developed at the University of California Berkeley.
- The MICA2 motes are based on the ATmega I 28L AVR microprocessor. The motes run using TinyOS as the operating system.

Ref:http://www.xbow.com/Products/Product _pdf_files/Wireless_pdf/MICA2_Datasheet. pdf

- Telosb motes have USB programming capability
- An IEEE 802.15.4 compliant, high data rate radio with integrated antenna, a low-power MCU
- There are also equipped with extended memory and an optional sensor suite

TELOSB MOTE

Ref:http://www.eecs.berkeley.edu/~culler/eecs194/labs/lab1/telosb.JPG

Introduction to Wireless Sensor Networks

One Example Sensor Board - MTS310

One More Example of Sensor Board - MTS400/420

 Besides the functions of MTS 300, it mainly adds GPS functionality

- o Further Reading
 - http://firebug.sourceforge.net/gps_tests.htm

Hardware Setup Overview

Programming Board (MIB520)

References

- Eschenauer, L., and V. Gligor, "A Key-Management Scheme for Distributed Sensor Networks," Proceedings of ACM Conference on Computer and Communications Security (ACM CCS), Washington DC, pp. 41-47, 2002
- 2. http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
- 3. http://www.ece.osu.edu/~bibyk/ee582/telosMote.pdf
- 4. http://en.wikipedia.org/wiki/Wireless_Sensor_Networks
- 5. http://arri.uta.edu/acs/networks/WirelessSensorNetChap04.pdf
- 6. http://www.eecs.harvard.edu/~mdw/course/cs263/papers/jhill-thesis.pdf
- 7. http://www.polastre.com/papers/polastre-thesis-final.pdf
- ^{8.} www.cse.fau.edu/~jie/teaching/fall_2004_files/sensorslidesl.ppt
- ^{9.} http://web2.uwindsor.ca/courses/cs/aggarwal/cs60520/SeminarMaterial/WSN-future.ppt
- ^{10.} http://web.cecs.pdx.edu/~nbulusu/talks/grace-hopper.ppt
- 11. http://galaxy.cs.lamar.edu/~bsun/wsn/wsn.html
- ^{12.} www.dsc.ufcg.edu.br/~maspohn/katia/introduction.ppt
- ^{13.} http://computer.howstuffworks.com/motel.htm