

MOBILITY MODEL

Mochammad Zen Samsono Hadi, ST. MSc. Ph.D.

Mobile Network Pervasive Computing – S2 PENS

Wireless Mobile Ad hoc Networks (MANETS)

- A Mobile Ad hoc Network (*MANET*) is a collection of mobile devices forming a multi-hop wireless network with minimal (or no) infrastructure
- To evaluate/study adhoc networks mobility and traffic patterns are two significant factors affecting protocol performance.
- Wireless network performance evaluation uses:
 - Mobility Patterns: usually, uniformly and randomly chosen destinations (random waypoint model)
 - Traffic Patterns: usually, uniformly and randomly chosen communicating nodes with long-lived connections
- Impact of mobility on wireless networks and ad hoc routing protocols is significant

Example Ad hoc Networks

Hybrid urban ad hoc network (vehicular, pedestrian, hot spots,...)

Classification of Mobility and Mobility Models

Mobility Dimensions & Classification of Synthetic Uncontrolled Mobility Models

5

* F. Bai, A. Helmy, "A Survey of Mobility Modeling and Analysis in Wireles Adhoc Networks", Book Chapter in the book "Wireless Ad Hoc and Sensor Networks", Kluwer Academic Publishers, June 2004.

I. Random Waypoint (RWP) Model

- 1. A node chooses a random destination anywhere in the network field
- 2. The node moves towards that destination with a velocity chosen randomly from [0, *Vmax*]
- 3. After reaching the destination, the node stops for a duration defined by the "pause time" parameter.
- 4. This procedure is repeated until the simulation ends
- Parameters: Pause time T, max velocity Vmax
- Comments:
 - Speed decay problem, non-uniform node distribution
 - Variants: random walk, random direction, smooth random, ...

Random Way Point: Basics

Random Way Point: Example

II. Random (RWK) Walk Model

Similar to RWP but

- Nodes change their speed/direction every time slot
- New direction θ is chosen randomly between (0,2 π]
- New speed chosen from uniform (or Gaussian) distribution
- When node reaches boundary it bounces back with $(\pi \theta)$

Random Walk

Mobile Network Pervasive Computing - S2 PENS

III. Reference Point Group Mobility (RPGM)

- Nodes are divided into groups
- Each group has a leader
- The leader's mobility follows random way point
- The members of the group follow the leader's mobility closely, with some deviation
- Examples:

11

- Group tours, conferences, museum visits
- Emergency crews, rescue teams
- Military divisions/platoons

Group Mobility: Single Group

Group Mobility: Multiple Groups

IV. Obstacle/Pathway Model

- Obstacles/bldgs map
- Nodes move on pathways between obstacles
- Nodes may enter/exit buildings

(c) Pathway Graph on a Campus

- Pathways constructed by computing Voronoi graph (i.e., pathways equidistant to nearby buildings)
- Obstacles affect communication
 - Nodes on opposite sides (or in/outside) of a building cannot communicate

V. Related Real-world Mobility Scenarios

Pedestrian Mobility

- University or business campuses
- Usually mixes group and RWP models, with obstacles and pathways
- Vehicular Mobility
 - Urban streets (Manhattan-like)
 - Freeways
 - Restricted to streets, involves driving rules

¹⁷ Urban Street Streets - Manhattan

Freeway Map

IMPORTANT: A framework to systematically analyze the "*I*mpact of *M*obility on *P*erformance *O*f *R*ou*T*ing in *A*d-hoc *N*e*T*works"

Fan Bai, Narayanan Sadagopan, Ahmed Helmy {fbai, nsadagop, helmy}@usc.edu website "http://nile.usc.edu/important"

* F. Bai, N. Sadagopan, A. Helmy, "*IMPORTANT*: A framework to systematically analyze the Impact of Mobility on Performance of RouTing protocols for Adhoc NeTworks", *IEEE INFOCOM*, pp. 825-835, April 2003.

* F. Bai, N. Sadagopan, A. Helmy, "The *IMPORTANT* Framework for Analyzing the Impact of Mobility on Performance of Routing for Ad Hoc Networks"*AdHoc Networks Journal - Elsevier Science*, Vol. 1, Issue 4, pp. 383-403, November 2003.

* F. Bai, A. Helmy, "The *IMPORTANT* Framework for Analyzing and Modeling the Impact of Mobility in Wireless Adhoc Networks", Book Chapter in the book "Wireless Ad Hoc and Sensor Networks", Kluwer Academic Publishers, June 2004.

The IMPORTANT Framework Overview

Results and Observations

 Performance of routing protocols may vary drastically across mobility patterns (Example for DSR)

 There is a difference of 40% for throughput and an order of magnitude difference for routing overhead across mobility models!

Which Protocol Has the Highest Throughput?

 We observe that using different mobility models may alter the ranking of protocols in terms of the throughput!

Which Protocol Has the Lowest Overhead?

• We observe that using different mobility models may alter the ranking of protocols in terms of the routing overhead!

RPGM(single group) : DSR

Manhattan : DSDV

- Recall: Whether mobility impacts protocol performance?
- CONCLUSION: Mobility DOES matter, significantly, in evaluation of protocol performance and in comparison of various protocols!

Mobility Model: ns3

- A set of mobility models which are used to track and maintain the current cartesian position and speed of an object.
- Mobility model:
 - ConstantPosition
 - ConstantVelocity
 - ConstantAcceleration
 - GaussMarkov
 - Hierarchical
 - RandomDirection2D
 - RandomWalk2D
 - RandomWaypoint
 - SteadyStateRandomWaypoint
 - Waypoint

scenarios and is most commonly used as a tool for the investigation of mobile ad hoc network characteristics.

Bonnmotion Mobility Model

 The scenarios can also be exported for several network simulators, such as ns-2, ns-3, GloMoSim/QualNet, COOJA, MiXiM, and ONE.

BonnMotion is a Java software which creates and analyzes mobility

Mobility model:

•

- Random waypoint model
- Manhattan Grid model
- Gauss-Markov model
- Reference Group Mobility model (RPGM)
- Static scenario
- Disaster Area model
- Tactical Indoor Mobility model
- Self-similar Least Action Walk (SLAW)

- Column Mobility model
- Nomadic Community Mob. Model
- Pursue Mobility model
- Chain model
- Boundless Simulation Area model
- Random Direction Model
- Random Street
- etc.

- Ahmed Helmy, *Tutorial Mobility Modeling for Future* Mobile Network Design and Simulation, Computer and Information Science and Engineering (CISE), College of Engineering, University of Florida
- Ha Yoon Song, Overview of Mobility Models, ICT, TUWien