Mobile Ad Hoc Networks

MATERI KULIAH MOBILE NETWORK PERVASIVE COMPUTING

> Dosen Pengampu: Moch. Zen Samsono Hadi, ST. MSc. Ph.D.

Outline

- Introduction
- Medium Access Control
- Routing (unicast)
 - Reactive Protocols
 - Proactive Protocols \vee
 - Hybrid Protocols
- Transport Issues
- Summary and Conclusions

Wireless Networks

- Need: Access computing and communication services
- Infrastructure-based Networks
 - traditional cellular systems (base station infrastructure)
- Wireless LANs
 - Infrared (IrDA) or radio links (Wavelan)
 - very flexible within the reception area; ad-hoc networks possible
 - low bandwidth compared to wired networks (1-10 Mbit/s)
- Ad hoc Networks
 - useful when infrastructure not available, impractical, or expensive
 - (military applications, rescue) home networking

Cellular Wireless

- Single hop wireless connectivity to the wired world
 - Space divided into cells
 - A base station is responsible to communicate with hosts in its cell
 - Mobile hosts can change cells while communicating
 - Hand-off occurs when a mobile host starts communicating via a new base station

Multi-Hop Wireless

• May need to traverse multiple links to reach destination

Mobile Ad Hoc Networks (MANET)

- Host movement frequent
- Topology change frequent

- No cellular infrastructure. Multi-hop wireless links.
- Data must be routed via intermediate nodes.

Why Ad Hoc Networks ?

- Setting up of fixed access points and backbone infrastructure is not always viable
 - Infrastructure may not be present in a disaster area or war zone
 - Infrastructure may not be practical for short-range radios;
 Bluetooth (range ~ 10m)
 Klf ~ m loop
- Ad hoc networks:
 - Do not need backbone infrastructure support
 - Are easy to deploy
 - Useful when infrastructure is absent, destroyed or impractical

Military Ad-hoc Network

Backbo

Event data recorder (EDR)

Positioning system

Computing platform

Communication facility

Rear radar

ommunication

Challenges in Mobile Environments

- Limitations of the Wireless Network
 - packet loss due to transmission errors
 - variable capacity links
 - frequent disconnections/partitions
 - limited communication bandwidth
 - Broadcast nature of the communications
- Limitations Imposed by Mobility
 - dynamically changing topologies/routes
 - lack of mobility awareness by system/applications
- Limitations of the Mobile Computer
 - short battery lifetime
 - limited capacities

Effect of mobility on the protocol stack

- Application
 - new applications and adaptations
- Transport
 - congestion and flow control
- ✓ Network ✓
 - addressing and routing
 - Link
 - media access and handoff
 - Physical
 - transmission errors and interference

Zour LEAM

Medium Access Control in MANET

Multiple Access with Collision Avoidance (MACA) [Karn90] Smarca

- MACA uses signaling packets for collision avoidance
 - RTS (request to send)
 - sender request the right to send from a receiver with a short RTS packet before it sends a data packet
 - CTS (clear to send)
 - receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - sender address
 - receiver address
 - packet size
- Variants of this method are used in IEEE 802.11

MACA Solutions [Karn90]

- MACA avoids the problem of hidden terminals
 - A and C want to send to B
 - A sends **RTS** first
 - C waits after receiving CTS from B

- MACA avoids the problem of exposed terminals
 - B wants to send to A, C to another terminal
 - now C does not have to wait, as it cannot receive CTS from A

Routing Protocols

Traditional Routing

• A *routing protocol* sets up a *routing table* in *routers*

ROUTING TABLE AT 1

Destination	Next hop	Destination	Next hop
1	_	7	2
2	20	80	20
3	3□	90	20
4	3□	10 🗆	20
5	20	110	30
6	2	12	3

• A node makes a *local* choice depending on *global* topology

Distance-vector & Link-state Routing

- Both assume router knows
 - address of each neighbor
 - cost of reaching each neighbor
- Both allow a router to determine global routing information by talking to its neighbors
- Distance vector router knows cost to each destination
- Link state router knows entire network topology and computes shortest path

Distance Vector Routing: Example

Link State Routing: Example

Routing and Mobility

- Finding a path from a source to a destination
- Issues
 - Frequent route changes
 - amount of data transferred between route changes may be much smaller than traditional networks
 - Route changes may be related to host movement
 - Low bandwidth links
- Goal of routing protocols
 - decrease routing-related overhead
 - find short routes
 - find "stable" routes (despite mobility)

Mobile IP

Mobile IP

Routing in MANET

Unicast Routing Protocols

- Many protocols have been proposed
- Some specifically invented for MANET
- Others adapted from protocols for wired networks
- No single protocol works well in all environments
 - some attempts made to develop adaptive/hybrid protocols
- Standardization efforts in IETF
 - MANET, MobileIP working groups
 - http://www.ietf.org

Routing Protocols

- Proactive protocols ~ Tahlerowny.
- RIP-homepotes. RIP-otissense OSPF-ometric.
- Traditional distributed shortest-path protocols
- Maintain routes between every host pair at all times
- Based on periodic updates; High routing overhead
- Examples:
 - DSDV (Dynamic sequenced distance-vector)
 - OLSR (Optimized Link State Routing)
- Reactive protocols
 - Determine route if and when needed
 - Source initiates route discovery
 - Examples:
 - DSR (Dynamic source routing)
 - AODV (on-demand distance vector) \checkmark
- Hybrid protocols
 - Adaptive; Combination of proactive and reactive
 - Example: Zone Routing Protocol (intra-zone: proactive; inter-zone: on-demand), SHARP (proactive near, reactive long distance)

Protocol Trade-offs

- Proactive protocols
 - Always maintain routes
 - Little or no delay for route determination
 - Consume bandwidth to keep routes up-to-date
 - Maintain routes which may never be used
- Reactive protocols
 - Lower overhead since routes are determined on demand
 - Significant delay in route determination
 - Employ flooding (global search)
 - Control traffic may be bursty
- Which approach achieves a better trade-off depends on the traffic and mobility patterns

Reactive Routing Protocols

Dynamic Source Routing (DSR) [Johnson96]

- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
- Source node S floods Route Request (RREQ)
- Each node *appends own identifier* when forwarding RREQ

Represents a node that has received RREQ for D from S

Route Discovery in DSR

[X,Y] Represents list of identifiers appended to RREQ

Route Discovery in DSR Y Ζ [S,E] S E F В С Μ J [S,C] G A Η D Κ Ν

 Node H receives packet RREQ from two neighbors: potential for collision

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

Route Discovery in DSR

 Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Discovery in DSR

- Destination D on receiving the first RREQ, sends a Route Reply (RREP)
- RREP is sent on a route obtained by reversing the route appended to received RREQ
- RREP includes the route from S to D on which RREQ was received by node D

Route Reply in DSR

Dynamic Source Routing (DSR)

- Node S on receiving RREP, caches the route included in the RREP
- When node S sends a data packet to D, the entire route is included in the packet header
 - hence the name source routing
- Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded

Data Delivery in DSR

Packet header size grows with route length

DSR Optimization: Route Caching

- Each node caches a new route it learns by *any means*
- When node S finds route [S,E,F,J,D] to node D, node S also learns route [S,E,F] to node F
- When node K receives Route Request [S,C,G] destined for node, node K learns route [K,G,C,S] to node S
- When node F forwards Route Reply RREP [S,E,F,J,D], node F learns route [F,J,D] to node D
- When node E forwards Data [S,E,F,J,D] it learns route
 [E,F,J,D] to node D
- A node may also learn a route when it overhears Data
- **Problem:** Stale caches may increase overheads

Dynamic Source Routing: Advantages

- Routes maintained only between nodes who need to communicate
 - reduces overhead of route maintenance
- Route caching can further reduce route discovery overhead
- A single route discovery may yield many routes to the destination, due to intermediate nodes replying from local caches

Dynamic Source Routing: Disadvantages

- Packet header size grows with route length due to source routing
- Flood of route requests may potentially reach all nodes in the network
- Potential collisions between route requests propagated by neighboring nodes
 - insertion of random delays before forwarding RREQ
- Increased contention if too many route replies come back due to nodes replying using their local cache
 - Route Reply *Storm* problem
- Stale caches will lead to increased overhead

Ad Hoc On-Demand Distance Vector Routing (AODV) [Perkins99Wmcsa]

- DSR includes source routes in packet headers
- Resulting large headers can sometimes degrade performance
 - particularly when data contents of a packet are small
- AODV attempts to improve on DSR by maintaining routing tables at the nodes, so that data packets do not have to contain routes
- AODV retains the desirable feature of DSR that routes are maintained only between nodes which need to communicate

Proactive Routing Protocols

Destination-Sequenced Distance-Vector (DSDV) [Perkins94Sigcomm]

- Each node maintains a routing table which stores
 - next hop, cost metric towards each destination
 - a sequence number that is created by the destination itself
- Each node periodically forwards routing table to neighbors
 - Each node increments and appends its sequence number when sending its local routing table
- Each route is tagged with a sequence number; routes with greater sequence numbers are preferred
- Each node advertises a monotonically increasing even sequence number for itself
- When a node decides that a route is broken, it increments the sequence number of the route and advertises it with infinite metric
- Destination advertises new sequence number

Destination-Sequenced Distance-Vector (DSDV)

- When X receives information from Y about a route to Z
 - Let destination sequence number for Z at X be S(X), S(Y) is sent from Y

- If S(X) > S(Y), then X ignores the routing information received from Y
- If S(X) = S(Y), and cost of going through Y is smaller than the route known to X, then X sets Y as the next hop to Z
- If S(X) < S(Y), then X sets Y as the next hop to Z, and S(X) is updated to equal S(Y)

Optimized Link State Routing (OLSR) [Jacquet00ietf]

- Nodes C and E are multipoint relays of node A
 - Multipoint relays of A are its neighbors such that each two-hop neighbor of A is a one-hop neighbor of one multipoint relay of A
 - Nodes exchange neighbor lists to know their 2-hop neighbors and choose the multipoint relays

Node that has broadcast state information from A

Optimized Link State Routing (OLSR)

- Nodes C and E forward information received from A
- Nodes E and K are multipoint relays for node H
- Node K forwards information received from H

Node that has broadcast state information from A

Hybrid Routing Protocols

Zone Routing Protocol (ZRP) [Haas98]

- ZRP combines proactive and reactive approaches
- All nodes within hop distance at most *d* from a node X are said to be in the routing zone of node X
- All nodes at hop distance exactly *d* are said to be peripheral nodes of node X's routing zone
- Intra-zone routing: Proactively maintain routes to all nodes within the source node's own zone.
- Inter-zone routing: Use an on-demand protocol (similar to DSR or AODV) to determine routes to outside zone.

Zone Routing Protocol (ZRP)

Radius of routing zone = 2

Routing Summary

- Protocols
 - Typically divided into proactive, reactive and hybrid
 - Plenty of routing protocols. Discussion here is far from exhaustive
- Performance Studies
 - Typically studied by simulations using ns, discrete event simulator
 - Nodes (10-30) remains stationary for pause time seconds (0-900s) and then move to a random destination (1500m X300m space) at a uniform speed (0-20m/s). CBR traffic sources (4-30 packets/sec, 64-1024 bytes/packet)
 - Attempt to estimate latency of route discovery, routing overhead ...
- Actual trade-off depends a lot on traffic and mobility patterns
 - Higher traffic diversity (more source-destination pairs) increases overhead in on-demand protocols
 - Higher mobility will always increase overhead in all protocols

References

- http://www.it.iitb.ernet.in.in/~sri
- IEEE 802.11 Wireless LAN
- VANET